
Developing a Core Library
The primary driver for this requirement is that we often deal with “files” be
they sourced from a local or UNC networked location or the web. Sometimes,
we may also want to deal with directories. It’s a common requirement for our
potential providers - even in dealing with manifest resources in implementing
such as the extended functionality of persisting resources to disk files “some-
where” in a users’ temporary path - as defined in the user profile on Windows.
In this respect these “files” may be resource-based such as images and icons
or may be Xml files and schemas as well as assemblies. Additionally, we’ve
already seen how a Uri is a “common currency” in dealing with “files” in gen-
eral - and directories, so we’ll revisit our Uri extensions for the Type Providers
to make them more useful in general-purpose usage - which will also benefit
our proposed Dynamic Providers.

As our core library will be referenced by all of our subsequent assemblies then
I’m also going to include some “useful” utilities and extensions as well as a
range of types including, for example, our IsoDate and IsoTime types. As for
the Common library of our Type Providers, this will then minimise the code in
subsequent assemblies by providing a Core of common functionality.

Firstly, I want to run though a couple of scripts in the Core project of the saTr ⌋
ilogy.Core solution. I’ve placed these in a solution folder named Scripts and
named them, appropriately, Messing Around.fsx and More Messing Around.fsx!
These scripts cover some important as well as useful functionality that can then
be incorporated into the source for the core assembly.

551

Web
 Sam

ple

552 DEVELOPING A CORE LIBRARY

Windows Management InstrumentaƟon Queries
Up to this point our dealings with Windows Management Instrumentation (WMI)
has been limited to the use of performance counters. This only represents a
fraction of the full functionality of WMI! Amongst other things, WMI monitors
the hardware of your machine. WMI uses a large, proprietary database, buried
in the guts of your Windows machine, to maintain information about your ma-
chine hardware as well as for everything else it does. Because the database is
so large and contains a great diversity of information, it is segmented by what
WMI calls a scope. The scope effectively defines a path into a segment of the
overall database. The first component of the scope path is actually a server
name where, often, you’ll see this identified by just a full-stop and that means
“the machine I’m running on”. You can also get your machine name in .NET via
the property System.Environment.MachineName and you’ve seen the usage of
this in our ETW implementation. As it happens, you don’t need “elevated priv-
ileges”/administrative authority to query much of the WMI database. However,
if your scope path identifies a server other than “your ownmachine”, then you’ll
need to be “connected” to that server and that implies an authority inherited by
your Windows Login identity as would be characterised in the Active Directory.

In the scope path, following the target server specification, one then specifies
the segment of the WMI database to which access is desired. There are a num-
ber of these but the onemost commonly used for queries - including hardware-
related queries, is the default segment called cimv2. The Distributed Manage-
ment Task Force (DTMF)[7] states that the acronym CIM stands for the Common
Information Model - and, presumably because its “common”, that’s why it’s
used as the default WMI path query segment - the v2 refers to “Version 2”. The
DTMF further has the following to say about the CIM…

“CIM provides a common definition of management information
for systems, networks, applications and services, and allows for
vendor extensions. CIM’s common definitions enable vendors to
exchange semantically rich management information between
systems throughout the network.

”
With the segment we can now address, if you will, a “table” that contains the
information we’re interested in. This is referred to as a WMI class. The class is
wrapped by a WMI Provider of which there are four - as specified in the MSDN
documentation…

Computer System Hardware Classes Hardware-related objects.

Operating System Classes Operating system related objects.

Performance Counter Classes Raw and calculated performance data from

Learning Visual F# 4.0: Foundations II ◆ 978-1537312026 ◆ Copyright © 2016, Chris M. Shattock

Web
 Sam

ple

Windows Management Instrumentation Queries 553

performance counters.
WMI Service Management Classes Management for WMI.

We will target the Computer Systems Hardware provider within which there are
a large number of “sub”-classes[54] of which we’ll use the following-with de-
scriptions from MSDN…

Win32_NetworkConnection Represents an active network connection in a
Windows based environment

Win32_Share Represents a shared resource on a computer system running
Windows. This may be a disk drive, printer, interprocess communication,
or other shareable device.

Win32_Volume Represents an area of storage on a hard disk. The class re-
turns local volumes that are formatted, unformatted, mounted, or offline.
A volume is formatted by using a file system, such as FAT or NTFS, and
might have a drive letter assigned to it. One hard disk can have multiple
volumes, and volumes can span multiple physical disks.

With that, let’s see how we formulate a WMI Query in F# and deal with its output;
this is in the script Messing Around.fsx of the Core project in the saTrilogy ⌋
.Core solution. Therein, we firstly reference and open a number of assem-
blies/namespaces and initialise Swenson’s FsEye. Thereafter, I’ve “extended”
the Uri class, as in our previous use, for a number of members such as Mod ⌋
e, ModeSpecificPath, Server and FileName and declared some “sample” Uri
instances.

Let’s firstly consider a value type that will evaluate the default network server
- this implies that you are network connected and “logged into” one or more
servers - the fact of logging into a server being sufficient to create an “active
network connection”. We use the code…

let DefaultNetworkServer =
2 match

(new ManagementClass(
4 @"\\.\root\cimv2",

"Win32_NetworkConnection", new ObjectGetOptions())
6).GetInstances()

.OfType<ManagementBaseObject>()
8 .Select

(fun mo ->
10 Regex.Match(

mo.Item("RemoteName").ToString(),
12 @"[^\\]+").Value)

|> Seq.tryHead
14 with

Web
 Sam

ple

554 DEVELOPING A CORE LIBRARY

| Some(value) when not <| String.IsNullOrWhiteSpace
value ->

⤦
. . .

16 value
| _ -> System.Environment.MachineName

The ManagementClass class, in the System.Management namespace takes
three arguments…

1. The WMI scope path comprising the \root of the server specification \\.
and the cimv2 segment. If the server is not specified in the scope path
then it is assumed that one is referring to the “local” machine - as we are
in our specification.

2. The WMI class against which we wish to target the query.

3. Generally, herein you’d specify a SELECT statement as, for example, a
Query Expression or similarly to T-SQL. I’m being lazy - I’m just telling
WMI to give me back an IEnumerable of the “keyed” values in the target
database segment by specifying a new GetObjectOptions() - the “keys”
are called “options”. You’re going to have to check the MSDN documenta-
tion to find out “which” option you want for a particular query! This can be
a tedious process so I would refer you to the WMI Explorer software pack-
age that you can download from CodePlex (see “Software & Hardware” on
page xv) .

Given that this “query” actually returns a collection of “results” I then issue the
GetInstances() method of the ManagementClass class to yield a collection
of ManagementObjectCollection objects. As usual with .NET entities this re-
sembles a collection of objects so I then use Linq to strongly type each object
in the collection as a ManagementBaseObject. With Linq I then re-shape the
collection using a Linq Select. In the lambda expression of the Linq Selec ⌋
t I use a Regular Expression to match only those items whose remote name
starts with a backslash. In dealing with the ManagementBaseObject item, with
the option name (key) of RemoteName, the result will be the server name we’re
connected to. If you do have a network connection then, in FSI, you can run
this query piecemeal to inspect each stage of the match expression’s output.

The Linq Select output sequence may have zero, one or more entries depend-
ing upon the natures of your machines network configuration. Since I want the
“default” server then I just to a Seq.tryHead to pull the first server (or None)
then push it through my pattern match option cases where, if there is no server,
I’ll instead output the name of the local machine.

Next, let’s look at network shares; for this one may also check if the user has
administrative authority to determine, if you choose to do so, whether or not to
include the administrative shares - those share targets whose path terminates
with a dollar character. In any event, I’ll verify that one has the authority to
access a particular share. For this we use the following…

Learning Visual F# 4.0: Foundations II ◆ 978-1537312026 ◆ Copyright © 2016, Chris M. Shattock

Web
 Sam

ple

Windows Management Instrumentation Queries 555

let RunningAsAdministrator =
2 (let user = WindowsIdentity.GetCurrent()

let principal = new WindowsPrincipal(user)
4 principal.IsInRole(WindowsBuiltInRole.Administrator))

6 type DirectoryInfo with
static member AccessPermitted path =

8 match Directory.Exists path with
| true ->

10 let di = new DirectoryInfo(path)
let acl = di.GetAccessControl()

12 let rules =
acl.GetAccessRules(

14 true,true,typeof<SecurityIdentifier>)
match

16 rules.OfType<FileSystemAccessRule>()
|> Seq.tryPick

18 (fun r ->
if r.AccessControlType =

20 AccessControlType.Allow
then Some r else None)

22 with
| Some(_) -> true

24 | None -> false
| false -> false

We now define a NetworkShares function which will take an argument being
the server name of the machine to query for any existing, authorised shares…

let NetworkShares(targetMachine : string option) =
2 let wmiPath =

match targetMachine with
4 | Some(value) -> """\\""" + value + """\root\cimv2"""

| None -> """\\.\root\cimv2"""
6 (new ManagementClass(

"""\\.\root\cimv2""","Win32_Share",
8 new ObjectGetOptions())

).GetInstances()
10 .OfType<ManagementBaseObject>()

.Select
12 (fun mo ->

sprintf """\\%s\%s"""
14 mo.ClassPath.Server

<| mo.Item("Name").ToString())
16 |> Seq.choose

Web
 Sam

ple

556 DEVELOPING A CORE LIBRARY

(fun path ->
18 match DirectoryInfo.AccessPermitted path with

| true -> Some(new Uri(path))
20 | false -> None)

You can see here that the scope path is constructed to include a server since,
if the option argument is not specified, then I’ll explicitly set the local machine.
The query is the same as for the default server just that we’re now targeting
the WMI class Win32_Share and looking for the “option” Name. The Linq Sele ⌋
ct simply formulates a UNC path given the server name and each share name
and the subsequent Seq.choose will only take elements that have “Some value”
and, for these, we create a Uri from the UNC share string.

For our third WMI query I want to determine the cluster size of a disk upon
which a targeted Uri exists. I will use this cluster size (or block size) for two
purposes…

1. For asynchronous file access I would like to specify a buffer size; the target
disk file is “read” in sections and/or each section is written to a target -
such as a memory stream. Setting this asynchronous block size is often a
hit an miss affair, however, to me, logic indicates that a “sensible” choice
would be the block size which the disk upon which the target resides is
formatted. The block size determines “how” a file is stored on disk across
a number of blocks. Each block can only be “assigned” to a single file
so whilst a file can span many blocks no two files can “share” any single
block. Some “shops”, when storing video or other “large” files make sure
that they’re maintained on disks that have a formatted block size of 64KB
to optimise Disk I/O at the potential expense of “some” wasted space.
Most files - certainly from an NTFS viewpoint, reside on disks with the
default block size of 4KB or 4096 bytes. Even if your file was only, say,
123 bytes in size, then its “size” on disk will actually be 4096 bytes! This
is how “space is wasted” on a drive and why some people will distribute
different “types” of files on drives with block sizes more appropriate to
the file sizes contained thereupon. It seems to me that an appropriate
asynchronous buffer size, in order to try and optimise disk I/O should be
the block size or a multiple thereof.

2. The foregoing may have caused you to raise an eyebrow; one generally
assumes, without fairly detailed hardware knowledge, that the file size
is the file size! This is not so and the situation gets even more complex
when one deals with disks that are “compressed”. The former issues we’ll
address in the next topic.

The WMI class Win32_Volume offers one access to the block size of a disk - as
follows…

Learning Visual F# 4.0: Foundations II ◆ 978-1537312026 ◆ Copyright © 2016, Chris M. Shattock

Web
 Sam

ple

The Real Size of a File! 557

let DiskBlockSize (disk : string)
2 (targetMachine : string option) =

let server =
4 match targetMachine with

| Some(value) -> value
6 | None -> System.Environment.MachineName

let wmiPath =
8 sprintf """\\%s\root\cimv2""" server

(new ManagementClass(
10 wmiPath,"Win32_Volume", new ObjectGetOptions())

).GetInstances()
12 .OfType<ManagementBaseObject>()

.Where
14 (fun mo ->

not <|
mo.Item("Name").ToString().StartsWith(disk))

⤦
. . .

16 |> Seq.choose
(fun mo ->

18 try
match

20 System.UInt64

.TryParse(mo.Item("BlockSize").ToString())
⤦

. . .
22 with

| (true,value) -> value |> Some
24 | _ -> None

with _ -> None)
26 |> Seq.tryHead

Video
303. WMI Queries - Parts I
through III.

You should now recognise the method by which
the WMI query is submitted; here we look
for the options Name and BlockSize in the
Win32_Volume class. Herein we use a Linq Wh ⌋
ere filter whereby we select the disk Name that
corresponds to the function argument of disk. There may be a few of these de-
pending upon your system configuration so we push the filtered output through
a Seq.choose and for each disk (although the result will be the same) we de-
termine if the option BlockSize is an integer and we’ll just take the sequence
head as an option. In code, I’ll likely assign a default block size of 4KB if this
function outputs None.

The Real Size of a File!
Bear in mind our comments in the previous topic about the size of a file in
relation to the block size of the disk upon which it resides: For a sample file, a

Web
 Sam

ple

558 DEVELOPING A CORE LIBRARY

UNC reference from my server, the properties for the file via the Windows File
Explorer show two sizes - as depicted below. The disk this file is stored on is
not compressed - if it were then there would be an even larger discrepancy
between the Size and Size on disk values. If you do a new FileInfo(u2.ModeS ⌋
pecificPath) and then a FileInfo.Length against the file the reported size
is 64,275,720 bytes - which is reported in the Windows File Explorer as the Size.

The cluster size of the target disk is 4096
bytes. You’ll note that the modulus (the re-
mainder after division) of the Length from
the FileInfo with the block size of 4096L
is 1288L whereas the modulus, 64278528L
% 4096L, is 0L. The Size on disk is an integ-

ral number of 4KB blocks and the Size is 2,808 bytes less than the number of
blocks occupied by the file on the disk. You’ll also note that the size difference
of 2,808 bytes is less than the size of a block of 4,096 bytes. Therefore…

The Windows File Explorer for a File displays two sizes…

Size on disk Specifies the number of blocks occupied on the disk by the
file. This will always be equal to or greater than the actual file size.
If greater, it cannot be greater than the size of a single block on the
target disk.

Size Specifies the “real” size of the file on the disk. This is always less
than, by up to no more than the length of a block size on the target
disk, the reported Size on disk.

The FileInfo Length property outputs the real size of the file - not the
number of blocks that it occupies on the target disk.

OK - which one do we use? For me, if Im doing (especially asynchronous) buf-
fered operations using the block size or a multiple thereof of the buffer, then it
makes sense to use the Size on disk - the total number of blocks occupied by the
file. If we load a memory stream thus, unless the real size is the same as the
size on disk, then the last buffer will always have some trailing binary zeroes
after the end of file since the memory stream is effectively a mirror of the disk
storage - albeit the blocks in the memory stream are contiguous - which they
may not be on the disk unless disk fragmentation is kept in check - especially
for files that are written to often. You may save some memory (of a size less
than the block size) if you define a memory stream to be the same length as
the real file size but then you’ll have to evaluate a buffer which, preferably, is
an integral fraction of the real size; all in all, not worth the effort. Alternatively,
if you were, for example, transferring a file over a network socket, say, you’d be
more interested in the “real” file size.

Both have their uses but how do we evaluate the size on disk? To do so, wemust
once again turn to the native Windows API. We make an extern declaration for

Learning Visual F# 4.0: Foundations II ◆ 978-1537312026 ◆ Copyright © 2016, Chris M. Shattock

Web
 Sam

ple

The Real Size of a File! 559

themethod GetCompressedFileSizeW of the DLL kernel32.dll - as follows (again,
for such, don’t forget the open for System.Runtime.InteropServices)…

[<DllImport("kernel32.dll",SetLastError = false)>]
2 extern uint32 GetCompressedFileSizeW(

[<MarshalAs(UnmanagedType.LPWStr)>] string lpFileName,
4 [<Out>] uint32& lpFileSizeHigh)

Let’s firstly get the block size for our sample file - the value type named u2 in
our script…

let drive,server =
2 let di = new DirectoryInfo(u2.ModeSpecificPath)

di.Root.Name, u2.Server

We can now evaluate the block size…

let bsize = int64 (DiskBlockSize drive <|
Some(server)).Value

⤦
. . .

FSI reports this as 4096L - 4KB. Let’s now define a mutable (byref) value type
used in invoking the extern GetCompressedFileSizeW…

let mutable hosize = 0u

That’s a strange name to give a value type! There’s a reason for this; regarding
the method GetCompressedFileSizeW…

● It has an output of uint32 - an unsigned integer. A uint32 is 32 bits in
size - 4 bytes.

● It has a byref input and output value type named lpFileSizeHigh of
uint32 - another 32 bit unsigned integer.

Yet, a file’s size is reported as a long integer - an int64 of 64 bits in length. I
guess this is a hang-over from “earlier days” when an integer was sufficient to
quantify a file size and this method retains retrograde compatibility (especially
as it’s in a file named kernel32.dll - that is, you’d suspect a 32 bit (x86) operating
system rather than a 64 bit (x64) system). The method, then, effectively returns
two 32 bit integers and requires you to “combine” them into a 64 bit integer!
This involves some jiggery-pokery; the method output is the “low order” 32 bits
of the combined 64 bit integer of the length. The byref argument, that which
will be saved in our value type named hosize, are the high-order 32 bits of
which, when combined with the low order bits will yield an int64 for the file
size/length.

You probably wont see this “in action” since a uint32 can hold a file size of a
length up to 232 - 1 = 4,294,967,295 bytes. That is, one byte less than 232 = 4GB. It’s

Web
 Sam

ple

560 DEVELOPING A CORE LIBRARY

only when your file size is, or exceeds 4GB, that the high order bits are set as
well as the low order bits - and the low order bits and high order bits, separately
are’nt then “real” unsigned integers - you have to glue them together to get a
64 bit integer to yield the “true” size. If the file size is less than 4GB then the
high order uint32 is zero.

Let’s invoke the method…

let losize = GetCompressedFileSizeW(u2.ModeSpecificPath,
&hosize)

⤦
. . .

So; the high order bits are stored in hosize and the low order bits, as the output
of the method invocation, are stored in losize. Let’s now “glue” the 32 bits of
each of the high and low order bits into a 64 bit integer…

let size = Int64.Parse(hosize.ToString()) <<< 32 |||
(int64 losize)

⤦
. . .

You see the <<< 32? I’m parsing the high-order unsigned, 32 bit integer into a 64
bit integer and since these are the “high-order bits”, I’m left-shifting the bits of
the integer 32 times. this basically places these 32 high-order bits in positions
0 through 31 of the 64 bit integer and leaves bits 32 to 63 as zero. Subsequently
I use ||| to “logically OR” these bits with the low-order bits parsed as a long
integer. Parsing the low-order bits into a 64 bit integer means that said integer
will have zeros in position 0 to 31 and only the bits from 32 through 63 will be
“filled” with the low-order bits. Now, what the logical OR does, in binary terms
of dealing with 0 and 1, is that 0 ||| 0 -> 0 but any other combination of 0
and 1 (such as 0 ||| 1) outputs 1 - you can “read” 0 and 1 as false and true,
respectively. Consequently, OR’ ing the two 64 bit integers will not interfere with
any “numbers” (set bits) for either the high or low order bits and we have, at
the end of it a “real” int64 file length.

Is this size the “real” file size or the file on disk? FSI shows the output of the
invocation as…

val size : int64 = 64275720L

Aha - the “real” file size! However, what if we want the “size on disk”? To evaluate
this we have to use the block size and the formula is as follows…

let blocksoccupied = ((size + bsize - 1L) / bsize) * bsize

Video
304. A File's Size - Parts I
through III.

If you evaluate this then FSI will show you the
output of 64278528L - which is precisely what we
require.

When we implement this in the Core assembly,
we’ll use a switch via an optional Boolean argu-

ment so that one can choose to output either the real size or the size on disk
- for which the latter will be the default.

Learning Visual F# 4.0: Foundations II ◆ 978-1537312026 ◆ Copyright © 2016, Chris M. Shattock

Web
 Sam

ple

Searching for Files 561

Searching for Files
This is a topic we’ve already covered in dealing with the Type Providers in
searching for a relatively specified Uri. I just want to tidy this up a bit especially
with regard to searching the AppDomain for assemblies.

let codeBases (includeGAC : bool) =
2 AppDomain.CurrentDomain.GetAssemblies()

.Where(
4 fun asm ->

asm.GlobalAssemblyCache = includeGAC)
6 .OfType<Assembly>()

|> Seq.choose
8 (fun asm ->

try
10 let fi = new FileInfo(asm.Location)

match
12 fi.DirectoryName

.StartsWith
14 (Environment.GetEnvironmentVariable

("LOCALAPPDATA"))
16 with

| true -> None
18 | false ->

match
20 asm.GetCustomAttribute

(typeof<AssemblyCompanyAttribute>)
22 with

| :? AssemblyCompanyAttribute as attr ->
24 match

attr.Company.StartsWith("Microsoft")
26 with

| true -> None
28 | false -> Some(fi.DirectoryName)

| _ -> Some(fi.DirectoryName)
30 with _ -> None)

I point this out since now there are three features that we have, before, either
excluded or ignored…

1. Rather than excluding the Global Assembly Cache (GAC) from a search
for loaded assemblies I now add a switch to the function invocation that
enables the searching of GAC loaded assemblies.

2. When using FSI then, as intimated, the FSI assembly will dynamically cre-
ate assemblies from your execution code. These dynamic assemblies

Web
 Sam

ple

562 DEVELOPING A CORE LIBRARY

are saved to disk in the system AppData\Local folder of your user pro-
file settings - the path is specified via the environment variable named
LOCALAPPDATA. Any #r referenced assemblies are also copied to this
“target” path. The path is not fixed in its entirety as FSI will will cre-
ate and manage subdirectories dynamically as its needs dictate. On my
machine LOCALAPPDATA resolves as C:\Users\Chris.Shattock\AppData\Local;
enabling the showing of hidden files and protected operating system
files in my Control Panel Folder & Search options, shows me, for ex-
ample, an inclusion of the assembly saTrilogy.Configuration.dll in the sub-
directory assembly\dl3\J8MOL1CQ.GNR\HCGC4POZ.4M9\bdb342c6\5a90e15f_
65ebd101 of the LOCALAPPDATA directory.

Unlike the IDE, FSI does not also copy files marked in the solution explorer
that are copied into the bin path during a build of a project/solution
process. In fact, even attempting to include a .NET .config file with you
FSI referenced assembly is a nightmare. As no assembly “allied” files are
copied by FSI into its dynamically generated folders, then I see no point
in conducting a search for any assembly in the AppDomain where its path
is in LOCALAPPDATA - sure, you may find the assembly if you’ve referenced
it in FSI, but it won’t enable you to pick the likes of a configuration file or
referenced assemblies at its LOCALAPPDATA location since they won’t exist
therein! Consequently I’m filtering all such LOCALAPPDATA assemblies out
of the AppDomain search.

The issue here is that having copied the referenced assemblies to the re-
quired LOCALAPPDATA path then their codebase becomes that LOCALAP-
PDATA path. It would be far more useful, to my mind and in promoting
FSI functionality, for FSI to reference assemblies at execution time from
their originally referenced location rather than their copied LOCALAPP-
DATA location - or at least allowed the user to query the origin of the
FSI referenced assembly. It’s possible such a wish would be rejected by
the FSI developers as a security risk since then one is permitting access
to entities outside of the FSI sandbox but, since FSI “knows” about its
own sandboxes, it can easily intercept any such “outgoing” referencing
request and “monitor” it. Just like an earlier “suggestion” that FSI should
allow one to declare logical units of work to define scope boundaries for
code execution, it’s unlikely that either of the “suggestions” will be taken
on-board in upgrading FSI so one will still have to work-around the issues
generated by throwing FSI “ into the mix”.

3. Given the primary reason for wanting to search the domain loaded as-
semblies is to pick up an assembly codebase from where “associated”
files and assemblies (like third-party WPF-related assemblies) exist, then
it further seems improbable that one would ever be interesting in yield-
ing any Microsoft assemblies in the search output. Consequently, any
assembly that has its company attribute so set will also be filtered out of
the search.

Learning Visual F# 4.0: Foundations II ◆ 978-1537312026 ◆ Copyright © 2016, Chris M. Shattock

Web
 Sam

ple

Searching for Files 563

In the script I can now declare several file-search related functions…

let searchFile (root : string) (name : string) =
2 let rec fileScan dir file =

if DirectoryInfo.AccessPermitted dir then
4 let target = Path.Combine(dir,file)

match File.Exists target with
6 | true -> [target]

| false ->
8 [for sd in Directory.GetDirectories(dir) do

yield! fileScan sd file]
10 else []

12 match fileScan root name with
| [] -> None

14 | value -> Some(value.Head)

16 let SearchFilter (root : string) (filter : string) =
let rec fileScan dir =

18 seq {
if DirectoryInfo.AccessPermitted dir then

20 yield! Directory.EnumerateFiles(dir,filter)
for sd in Directory.GetDirectories(dir) do

22 yield! fileScan sd }

24 fileScan root

26 let searchAppDomain (fileName : string) (includeGAC :
bool) =

⤦
. . .

codeBases includeGAC
28 |> Seq.tryPick(fun cb -> searchFile cb fileName)

In the script, for searchAppDomain, I included a commented section where we
don’t filter-out the Microsoft assemblies since, in testing in FSI, codeBases is
guaranteed to always yield an empty sequence since any referenced assemblies
are placed in the LOCALAPPDATA path which is excluded by codeBases.

Video
305. File searching
revisited - Parts I & II.

For the searchFile function you can see that
it’s simplified with regard to prior implementa-
tions as I’m not now using a mutable value type
to “hold” the found output but rather doing a re-
cursive yield of a list fromwhich we try to take the
head. It may now be “simpler” however the function is no longer tail-recursive
so executing it “ inappropriately” - such as from a root with a large number
of nested subdirectories, can have a severe performance impact on your sys-
tem and it may even thereby exhaust your system resources and cause a stack
overflow exception.

Web
 Sam

ple

564 DEVELOPING A CORE LIBRARY

From the principle of using a recursive yield for a list we can, for the hell of
it, now also search for files using a filter - as in the function searchFilter.
Once again, with regard to potential escalation of system resource usage, use
this with caution with regard to how many nested directories may need to be
searched for files whose name accommodates the argument specified filter -
such as in, for example, *.xml.

A Miscellany of UƟlity Extensions
I want to just quickly run through some of the extensions I’ll be putting in place
to form general-purpose, utilitarian functions. These and more I’ll incorporate
into the core assembly in order to make them “centrally available” to any and
all referencing assemblies and applications.

String Outputs
I generally refer to such a “stringifying” objects and use these extensions a lot
in order to better express output in terms of both error and status reporting
and for use in ToString() overrides so FSI and FsEye display of an entity is
somewhat “more meaningful”. Firstly, let’s take the requirement to appropri-
ately display the contents of an object array - for which the ToString output
is useless and displays nothing of the “content” of such a value type. We pre-
viously considered an extension toHexString to “hexify” the display of a byte
array (that I will also incorporate into the Core assembly) but, “more generally”,
consider the extension…

type 'a``[]`` with
2 member µ.Stringify(?len : uint16) =

let length =
4 match

match len with
6 | None -> 1

| Some(value) -> int value
8 with

| x when x > µ.Length -> µ.Length
10 | x -> x

(µ |> Array.take length
12 |> Array.fold

(fun acc elem ->
14 elem.ToString() + "," + acc)

String.Empty
16).Trim(',') +

if µ.Length > length

Learning Visual F# 4.0: Foundations II ◆ 978-1537312026 ◆ Copyright © 2016, Chris M. Shattock

Web
 Sam

ple

A Miscellany of Utility Extensions 565

18 then "..."
else ""

There’s nothing spectacular about this - it’s just “useful”. Now, in previous
work, in validating “something” as a valid string we assumed a string or string
option type and declared extensions to the String type. I tire of this; to me
it’s more obvious to have such as an extension of the Object type and thence,
since everything derives from object, the Intellisense pop-up will show our
extensions for everything - like the ToString() objectmethod. Consequently,
in the script I define an Object instance member extension called IsValidS ⌋
tring.

Additionally, we have used a CaseName function to get the string representation
of a union case name; let’s now try an Object instance extension method, Ca ⌋
seName, as follows…

member µ.CaseName =
2 match FSharpType.IsUnion <| µ.GetType() with

| true ->
4 match

FSharpValue.GetUnionFields(µ, µ.GetType(), true)
6 with

| uci, o ->
8

String.Format("{0}({1})",uci.Name,o.Stringify())
⤦

. . .
| false -> µ.ToString()

Again, “nothing special” about this other than its use as an object extension
property. However, we also deal with enum types and, if we’re doing this for
union cases then we may as well use a single object property to evaluate the
ToString() for either a union case name or an enum member - as follows…

member µ.ItemName =
2 match µ with

| :? Enum as e ->
4 Enum.GetName(e.GetType(),e)

| typ when FSharpType.IsUnion <| µ.GetType() ->
6 match

FSharpValue.GetUnionFields(µ, µ.GetType(), true)
8 with

| uci, o ->
10 match o with

| [||] -> uci.Name
12 | _ ->

String.Format("{0}({1})",uci.Name,o.Stringify())
⤦

. . .

Web
 Sam

ple

566 DEVELOPING A CORE LIBRARY

14 | _ -> µ.ToString()

Now, when you invoke the ItemName property against an object instance it will
show…

● For an enum member its name.

● For a union case the case name and, if the case has an underlying type,
we’ll attempt to Stringify that type and show its “content” in the output
string. For example, for the union…

type Aunion =
2 | First

| Second of string
4 | Third of int

Then FSI output for an ItemName against each shows, for example…

val it : string = "First"
2 val it : string = "Second(content)"

val it : string = "Third(9)"

● For anything else we just use the “normal” object ToString() method.

Video
306. Object Extensions

For error reporting in the past we’d often defined
a Cases member for a union to show what cases
are incorporated into a union - such as for our
FileAccessMode. In line with the ItemName ex-

tension we can incorporate another object extension that will deal with union
cases as well as enum members as follows…

member µ.Cases =
2 match µ with

| :? Enum as e ->
4 (Enum.GetNames(e.GetType())

|> Seq.fold(fun acc em -> acc + ";" + em)
String.Empty

⤦
. . .

6).TrimStart(';')
| typ when FSharpType.IsUnion <| µ.GetType() ->

8 (FSharpType.GetUnionCases(µ.GetType())
|> Seq.fold

10 (fun acc uci -> acc + ";" + uci.Name)
String.Empty

12).TrimStart(';')
| _ -> µ.ToString()

Learning Visual F# 4.0: Foundations II ◆ 978-1537312026 ◆ Copyright © 2016, Chris M. Shattock

Web
 Sam

ple

A Miscellany of Utility Extensions 567

ConverƟng a String to a Typed Array
Especially in dealing with the expressions required by the XSettings Type Pro-
vider for converting Xml strings to strongly-typed arrays I was frustrated by the
apparent need to hard-code a a method invocation such as DateTime.Parse
for each element in a collection to yield an output array of the appropriate type
- even then, for the Type Provider, I had to “pre-qualify” the output type of such
a provided property. I was pretty sure there was a better way to do this and,
given the .NET interaction, I was pretty sure that it meant using generics and
casting.

It took a while - until I “remembered” about Linq and its prevalence throughout
both .NET and F#, to find a “simple” way to split a string into a typed array.
The moral of this story is that, once again, you can be pretty sure that there’s
“something” in the .NET Framework that will address “most” of your application
problems - that is, don’t attempt to “re-invent the wheel” until you’ve had a
thorough look through both the F# documentation and the .NET Framework.

Consider the code…

type String with
2 member µ.ArrayOf1<'a>(?delimiter : char) =

let splitter =
4 match delimiter with

| None -> Unchecked.defaultof<char>
6 | Some(value) -> value

[| for txt in µ.Split(splitter) ->
8 System.Convert.ChangeType(txt,typeof<'a>)

|].Cast<'a>()
10 .ToArray()

This, to me, demonstrates elegance much in the same way as we found in the
recursive union we developed for our WPF Graph. It shows how well Linq is
integrated into F# and .NET: There is a generic type argument 'a that will specify
the ultimate type of the output array and a single argument of what character
delimiter is to be used in undertaking a Split for the string instance. But
wait! I’m allowing the delimiter as an optional argument and, if not specified,
it will be a null char! That’s fine - since the Split still works with a null char
delimiter - it just doesn’t do a Split but we still get a typed array but only with
one element. There is method in this madness - we use this “feature” in the
XResources Dynamic Provider so it can handle singleton settings values as well
as array settings values.

Anyway, we simply formulate an array comprehension such that each item will
be the element output of the Split to a string array and, for each item, we
invoke the Convert class method of ChangeType in the System namespace.
For ChangeType, we feed in the split element item as a string and the type we
want it converted to via the generic type argument.

Web
 Sam

ple

568 DEVELOPING A CORE LIBRARY

Being .NET, that yields an object array obj[], so we then use the Linq Cast
method to strongly-type it as a collection of type 'a. Cast output is actually
then an IEnumerable so we use the Linq ToArray method to convert the IEnu-
merable into a 'a[] - which is precisely what we want.

In the script there’s a number of tests of the ArrayOf1 string extension where
the value types are taken from our XSettings file. However, you’ll note the ab-
sence in our script of declarations for the IsoDate and IsoTime types so I’ve
added a #load "..\\Types.fs" to include them. For IsoDate and IsoTime
the ArrayOf1 fails with an invalid cast exception - fair enough, these are, after
all, user-defined types so I haven’t taken care to define them as exhaustively as
the .NET types. However, IsoDate and IsoTime both have static Parsemethods
that take a string and output a class instance. I want to extend the extension
so that if such conversion fails I’ll look for a static Parse method for the type
then invoke it with the argument of the split item string. Recall, we did similar
in dealing with WPF where we wished to be able, for third party assemblies, to
emulate the invocation of a default class constructor and static method invoc-
ation from F# as we’d effectively removed such in the C# initialisation of the
WPF object by removing the “parent” WPF item binding to a C# “code-behind”
class - our “Slimline WPF” methodology.

To effect such functionality is a more holistic way I want to create two Assembly
static member extensions as follows…

type Assembly with
2 static member DefaultInstance<'a>() =

try
4 match typeof<'a>.GetConstructor(Type.EmptyTypes)

with
⤦

. . .
| null -> None

6 | _ ->
Some(typeof<'a>.Assembly

8 .CreateInstance(
typeof<'a>.FullName,

10 true,
BindingFlags.CreateInstance,

12 null,
null,

14 Threading.Thread
.CurrentThread

16 .CurrentCulture,
null))

18 with _ -> None

20 static member StaticMethodInvoke<'a>(methodName :
string,

⤦
. . .

Learning Visual F# 4.0: Foundations II ◆ 978-1537312026 ◆ Copyright © 2016, Chris M. Shattock

Web
 Sam

ple

A Miscellany of Utility Extensions 569

?parms : obj[]) =
22 try

let args =
24 match parms with

| None -> null
26 | Some(value) -> value

match typeof<'a>.GetMethod(methodName) with
28 | null -> None

| methodInfo ->
30 if methodInfo.IsStatic

then Some(methodInfo.Invoke(null, args))
32 else None

with _ -> None

The GetConstructor is much as it was before - the difference being that we
specify the type required via the generic type argument. For the StaticMe ⌋
thodInvoke we again specify the type required via a generic type argument
but we also permit an optional argument, args, an obj[], so that if the target
static method requires arguments we can give these to it. Here the subsequent
essential difference in the code is that we evaluate the optional argument and
if not specified we set it to null - otherwise the obj[] used in the methodIn ⌋
fo.Invoke method call.

Now, with the ability of invoking IsoDate.Parse(string), for example, let’s
review the conversion of a string to a typed array…

type String with
2 member µ.ArrayOf<'a>(?delimiter : char) =

let splitter =
4 match delimiter with

| None -> Unchecked.defaultof<char>
6 | Some(value) -> value

[| for txt in µ.Split(splitter) ->
8 try

System.Convert.ChangeType(txt,typeof<'a>)
10 with _ ->

match
12 Assembly.StaticMethodInvoke<'a>(

"Parse",[|box txt|])
14 with

| None -> null
16 | Some(value) -> value

|].Cast<'a>()
18 .ToArray()

Web
 Sam

ple

570 DEVELOPING A CORE LIBRARY

Video
307. Convert a String to a
Typed Array - Parts I & II.

Now, should the cast raise an exception we’ll trap
it and instead try to invoke a static Parsemethod
for the target type with an argument of an ob-
ject array comprising the split element’s text. You
should now find this will work with any user-

defined type, such as IsoDate and IsoTime where that type defines a static
Parse method with arguments from which it may construct and output an in-
stance of itself.

MutaƟon of a Result Output Type
This is not about code that appears in this script but it is about important
changes that I’ve made in our Result structure commonly used to wrap function
output and it deserves its own topic if for no other reason than such a change
is easily found in this material.

The change arises primarily from the fact of the potential usage of our ArrayO ⌋
f<'a> String type extension. A consequence of using this with a null delimiter
is that output is still converted to an array - albeit with only the one element.
This may give rise to difficulties if the output is to be Result wrapped - one may
wish the output to be a Result<string> but via ArrayOf it would become Res ⌋
ult<string[]>. Consequently I have decided to encode an additional member
in the Result structure to “mutate” the output option value. In order to support
any exceptions raised in this mutation process I’ve now made the Errors field
mutable. We then declare the member…

/// Given the current result instance use a
function/lambda

⤦
. . .

2 /// expression to mutate the Result<'a> instance
into

⤦
. . .
/// a Result<'b> instance.

4 member µ.Mutate<'b>(f : ('a -> 'b)) =
try

6 match µ.Success with
| false ->

8 Result(µ.Errors)
| true ->

10 Result(f µ.Output.Value |> Some)
with exc -> Result(µ.Errors.AppendException exc)

Mutate is a generically typed function so it’s output is “strongly” expressed
when used in user code. It takes a single argument and that is a function
that takes an argument of type 'a - which is the generic type with which the
Result<’a> is declared - and outputs the type Result<'b> - using generic type
argument of the Mutate member.

The member constructs a new Result<'b> instance by applying the Output.V ⌋

Learning Visual F# 4.0: Foundations II ◆ 978-1537312026 ◆ Copyright © 2016, Chris M. Shattock

Web
 Sam

ple

File System Watcher, Observables & Observers 571

alue of the Result<'a> instance to the function argument. If the Result<'a>
Output has no value, then we simply output a Result<'b> using the Resu ⌋
lt<'a> Errors field - which is “expected” to contain exceptions from a prior
function evaluation that produces the Result<'a> instance. Any exceptions
encountered along the way are appended to any existing exceptions recorded
in the Errors instance of Result<'a> and the output is then a Result<'b>
containing these accumulated exceptions.

We will “see this in action” for our XSettings Dynamic Provider but, to give you
a taste of what’s to come, here’s some of it’s members - first one that outputs
an 'a[], then one that uses Mutate to change a 'a[] to a 'b via a function
and then one that uses Mutate with a lambda expression (the ArrayOf<'a> is
invoked in the xidValue member) …

/// Dynamically evaluate the XId value from the
underlying

⤦
. . .

2 /// XSettings file and output it as a type of float[].
member µ.FloatArray (xid : string) =

4 µ.xidValue<float>(NodeType.FloatArray,xid)

6 /// Dynamically evaluate the XId value from the
underlying

⤦
. . .
/// XSettings file and output it as a type of float.

8 member µ.Float (xid : string) =
µ.xidValue<float>(NodeType.Float,xid).Mutate<float>((A ⌋
rray.head))

⤦
. . .

10

/// Dynamically evaluate the XId value from the
underlying

⤦
. . .

12 /// XSettings file and output it as a type of byte[].
member µ.ByteArray (xid : string) =

14 µ.xidValue<string>(NodeType.ByteArray,xid)
.Mutate<byte[]>(fun arr ->
Convert.FromBase64String(arr.[0]))

⤦
. . .

File System Watcher, Observables & Observers
To implement a Dynamic Provider as opposed to a Type Provider, it helps if
the code can monitor any changes to the source data and react accordingly. I
won’t incorporate this “feature” into the Manifest Dynamic Provider - although
I should, since it’s conceivable that a primary and even satellite assemblies
might change during the life-cycle of an active Dynamic Provider such as one
one running via a Windows Service. Our concern is changes in either an XSet-

Web
 Sam

ple

572 DEVELOPING A CORE LIBRARY

tings or XResources file for our Dynamic Providers but the principle may be
extended for dealing with changes in the Manifest Dynamic Provider targeted
assemblies.

We’re being pretty specific here since we’ll deal with a .NET FileSystemWatc ⌋
her class instance wherein events are triggered under certain conditions - the
event we’re interested in is the Changed event of a file system watcher target
whereby the underlying file has been modified - reflected by, if not a change in
its size, then a changed in the file attribute regarding the time-stamp of when
the file was last “written to”. We could, if we so chose, simply “tag onto” the
.NET Changed event but, for “general-purpose usage” your data source for a
Dynamic Provider may not be “a file” - it could, for example, be a database
and such would not raise a .NET event to signify a change in its content - and,
even then, “which” content. You would have to manually code a .NET Event to
monitor your source and raise the event appropriately and this is sometimes
not possible and is always a royal pain where it is possible to “integrate” your
data source “into the .NET environment” to register events.

This then, is why we use the “simpler” methodology of Observables and Observ-
ers and, fortunately, F# Observables are tightly integrated into the .NET Frame-
work so it is trivial to identify a .NET event as the “subject” of an Observable.
It is a relatively straightforward task to code an F# Observable even for non-
.NET aware data sources as opposed to a .NET “event”. For example, with SQL
Server, we could fairly easily code an Observable to occasionally fire a stored
procedure or SQL function to detect changes we’re interested in - it would, ef-
fectively, just be a delegate function or a lambda expression that submits the
stored procedure invocation and acts upon its output or return code. In fact,
such could even emulate or use a Mailbox processor for asynchronous usage.
You should note that it’s slightly disingenuous of me to use SQL Server as “an
example” since there is, in fact, very tight coupling between SQL Server and .NET
as it’s possible to incorporate .NET assemblies into the SQL Server core and use
them within the SQL Server runtime context. That’s fine - if you “own” the SQL
Server instance in question - but try doing it though a shared hosting provider
or even an Azure SQL instance and you won’t get very far - unless you’re very
rich! If “anybody’s listening” - wouldn’t it be nice if one could use F# “natively”
in SQL Server in the same way as T-SQL - even to the extent of coding and saving
functions and stored procedures written in F#! Couple that with Logical Units
of Work in FSI and a “native” F# interlink between external assemblies and SQL
Server. Enough dreaming - let’s now consider the creation of an Observable for
the file system watcher’s Changed event - from the Messing Around.fsx script…

type FileChangeWatcher() =
2 let lastWritten =

new ConcurrentDictionary<string,DateTime>()
4 let invoker =

new ConcurrentDictionary<string,Invoker>()

Learning Visual F# 4.0: Foundations II ◆ 978-1537312026 ◆ Copyright © 2016, Chris M. Shattock

Web
 Sam

ple

File System Watcher, Observables & Observers 573

6

static let singleton = lazy (new FileChangeWatcher())
8 static member Singleton =

if singleton.IsValueCreated
10 then singleton.Value

else singleton.Force()
12

member val LastWritten = lastWritten with get
14 member val Invoker = invoker with get

16 member µ.Initialise(invoker : Invoker,path,name) =
let target = Path.Combine(path,name)

18 if not <| FileChangeWatcher.Singleton
.Invoker

20 .ContainsKey(target)
then FileChangeWatcher.Singleton

22 .Invoker
.AddOrUpdate

24 (target,
invoker,

26 fun _ _ -> invoker)
|> ignore

28 let fsw =
new FileSystemWatcher(Path = path, Filter = name,

30 EnableRaisingEvents = true)

32 fsw.NotifyFilter <-
fsw.NotifyFilter ||| NotifyFilters.LastWrite

34

fsw.Changed
36 |> Observable.map

(fun eventArgs ->
38 let fi = new FileInfo(eventArgs.FullPath)

if fi.LastWriteTime <>
40 FileChangeWatcher.Singleton

.LastWritten
42 .GetOrAdd

(fi.FullName,
44 DateTime.MinValue) then

FileChangeWatcher.Singleton
46 .LastWritten

.AddOrUpdate
48 (fi.FullName,

fi.LastWriteTime,

Web
 Sam

ple

574 DEVELOPING A CORE LIBRARY

50 fun _ _ ->
fi.LastWriteTime)

52 |> ignore
FileChangeWatcher.Singleton

54 .Invoker.[fi.FullName],
fi.FullName)

Firstly, you’ll note in the script that I’ve added some #load statements to pick
up some “core” types in the core assembly that support this types functional-
ity. Now, I define a type - a class and you’ll see that I’m once again using the
Singleton pattern (as for our ETW Event Source) for this class. I’m doing this
since I want to maintain some state information regarding the Observable we
define. This state information comprises two parts expressed via concurrent
dictionaries…

1. The details of who triggered the Observable - the concurrent dictionary
named invoker. This isn’t really necessary for anything other than audit-
ing purposes. Once you’ve declared an Observable then anyone who has
access to the value type whereby its declared can “subscribe” to that Ob-
servable. The dictionary key is the fully-qualified path and name of the
file against which we will be declaring an Observable and its value is an
instance of the Invoker type. The Invoker type is an extension to the O ⌋
rigin type of our ETW functionality - we’ve just accumulated the origin
information with the invoker (value type) name into a structure. This is
defined in the Origin.fs source file of the Core project.

2. More importantly, the .NET FileSystemWatcher has a habit of firing
changed events twice so in order to try and ameliorate this overhead
(which I fail to do) I’ll maintain a concurrent dictionary named lastWri ⌋
tten that saves the target file’s attribute of when it was last written to -
the DateTime thereof.

These ’backing fields’ are exposed, via the Singleton, as public, read-only prop-
erties. This leaves us with the Initialise method whereby we configure the
file system watcher and create an Observable for its Changed event. This takes
three arguments…

1. The invoker of the method. I “cheat” slightly in this because, for our Dy-
namic Providers exposed as classes, I’ll just inherit the Invoker structure
with a constructor argument of Mark - the same function we used for
ETW as in let Mark _ = (). This will then show the invoker as ctor -
the constructor of the class. Remember, this is “just” used for auditing
purposes - the next arguments are those that are required for creating a
FileSystemWatcher instance from the System.IO namespace…

2. The full path (less the file name) that contains the file(s) against which to
instantiate a file system watcher and…

3. The file name against which we wish to instantiate a file system watcher.

Learning Visual F# 4.0: Foundations II ◆ 978-1537312026 ◆ Copyright © 2016, Chris M. Shattock

Web
 Sam

ple

File System Watcher, Observables & Observers 575

We then Path.Combine the path and name to yield the fully qualified file name;
note that we are effectively thus excluding the possibility of instantiating the
subsequent file system watcher against more than one file - but, we should
actually not only check this but also ensure that no exceptions occur in ref-
erencing said target file. Generally, one may use a file system watcher with a
number of files specified via a filter - such as, for example, *.xml. I then want to
see if our invoker dictionary contains a reference to the invoker specified in the
argument for the target file. If the target is already in the dictionary then I don’t
want to change the information about who the original invoker was - if it isn’t,
then I’ll use the concurrent dictionary AddOrUpdate to stick this information in
the dictionary.

We then declare a new FileSystemWatcher instance using the argument spe-
cified path and name whilst also telling the instance that we do want to enable
it to raise events; in the subsequent expression we use the logical OR to ensure
that the triggers registered by the file system watcher instance include the L ⌋
astWrite attribute for the target file. With this, any change in the target file’s
last written DateTime will give rise to a Changed event - which we subsequently
add an event handler to.

Now, the event handler for the changed event is actually piped into an instance
of an F# Observable wherein we encode a lambda expression that is the se-
quence of actions to undertake in the event that a Changed event has been
triggered - this is the Observable.map function whereby we actually “define”
an observable’s actions.

The Observable actually takes the same event arguments object for its lambda
expressions anonymous function that the .NET Changed event handler would
have to specify (as its second argument - the first being the “sender” of the
event). The Changed event arguments encapsulate, as a property, the FullPath
of the target file against which the event was raised - we pull this out and feed it
through a FileInfo to extract more useful information about the argument as a
file. With the FileInfo instance we check whether the file attribute for the last
written DateTime is different from that in our Singleton accessed concurrent
dictionary of LastWritten - if not, we effectively discard the event -there is an
implicit else () in the code. Otherwise, we’ll update the last written DateTime
in the concurrent dictionary and then spit out a tuple of the original invoker of
the Observable and the target fully qualified file name.

So, we have defined an Observable - let’s bring one into existence by using the
expression…

let fsw =
2 FileChangeWatcher.Singleton

.Initialise(new Invoker(Mark),
4 @"T:\","temp.txt")

Somewhere “out there” is now an observable “waiting” for a file change on the

Web
 Sam

ple

576 DEVELOPING A CORE LIBRARY

file T:\Temp.txt at which point its lambda expression (or a delegate) will be
invoked. You can go ahead and create and change such a file - but you won’t
“see” anything happening - even if you attempt to debug the fsw expression in
FSI rather than execute it. The Observable is declared and active, but we have
yet to define anyObservers by which we can benefit from the lambda expression
of the Observable. Let’s now “subscribe” a value type to this Observable; use
the following expression…

fsw.Subscribe(fun (o,f) -> printfn "File = %s, Owner =
%A" f o)

⤦
. . .

Video
308. Observables and
Observers - Parts I through
III.

You see; with an “observer”, we invoke the Sub ⌋
scribe method against the value type and use
a lambda expression (or delegate) that responds
to the output of the Observable. Now, you can
only use Subscribe against a value type whose
signature is IObservable<'a>. The type of fsw is

IObservable<Invoker * string> - since we declared it explicitly against the
output of the Initialise member whose Observable output comprises a tuple
of an Invoker instance and a string instance - being the fully qualified name
of the “target” file against which the Observable is defined. Our fsw.Subscr ⌋
ibe anonymous function of the lambda expression’s anonymous function will
then receive, as its input argument, this tuple that we’ve encoded as (o,f) with
type <Invoker * string>. Our function just pushes out a text string detailing
the event but, as you can appreciate, when it comes to coding the Dynamic
Providers, we’ll have to do a little more than that!

ComputaƟon Expressions/Workflows - Overview
There’s no denying that this is a complex subject and, moreover, there’s noth-
ing in this material to date that we’ve done that really “justifies” the use of
a workflow. Consequently, in this topic, I’ll just introduce the concept and its
asynchronous ramifications in comparison to “what we already know”. As the
first part, then, of this overview, let’s go way, way back to when we were in-
vestigating the “binding” of a function in such a way as to be able to trap any
exception it incurred within the scope of a class within which function evalu-
ation is encapsulated. Consider (from the More Messing Around.fsx script in the
Core project)…

type Compose() =
2 static member Bind f arg =

try f arg
4 with exc -> raise exc

This shouldn’t raise any eyebrows - by now we’re well used to dealing with
function composition using such a methodology. Consider the function…

Learning Visual F# 4.0: Foundations II ◆ 978-1537312026 ◆ Copyright © 2016, Chris M. Shattock

Web
 Sam

ple

Computation Expressions/Workflows - Overview 577

let f x y =
2 printfn "arg1 = %i, arg2 = %i" x y

x + y

It’s simple enough - the function takes two arguments, x and y, prints out what
they are and then outputs their sum. Let’s “compose” iterative invocations of
this function…

let Composition =
2 Compose.Bind (f 42)

>> Compose.Bind (f 43)

So, we’ve now declared a composite function that firstly partially evaluates f
42, then applies the Composition function argument - presumed to be another
integer. In the following composition, the prior output is then used as the sec-
ondary input after the partial evaluation of f 43. You can test this composite
function by evaluating Composition 0 and FSI will show you the output of…

arg1 = 42, arg2 = 0
2 arg1 = 43, arg2 = 42

val it : int = 85

This much, given experience to date, you should have no problemwith. Now, I’m
going to refer to Scot Wlaschin’s website, F# for Fun & Profit - his page “Compu-
tation expressions: Introduction”[64]. I’ve slightly modified Scott’s introductory
Computation Expression and declared it in my script as…

type LoggingBuilder() =
2 let log p = printfn "expression is %A" p

4 member this.Bind(x, f) =
log x

6 f x

8 member this.Return(x) =
x

This may “look similar” to our Compose Bind - except that;

● Scott uses an instance Bind member - ours is static.

● Scott’s Bind invokes a side-effect of printing out what it’s evaluating.

● Both appear to permit an “arbitrary” function as an argument.

● Scott’s Bind arguments are “reversed” - argument first, then function.

● Scott’s Bind doesn’t use a try/with exception trap.

Web
 Sam

ple

578 DEVELOPING A CORE LIBRARY

● the LoggingBuilder contains a “mysterious”member, Return that doesn’t
actually appear to do anything other than output its argument.

Let’s create an instance of the LoggingBuilder class…

let logger = new LoggingBuilder()

Now, Scott’s workflow that encapsulates a series of Computation Expressions
against this logger instance…

let loggedWorkflow =
2 logger

{
4 let! x = 42

let! y = 43
6 let! z = x + y

return z
8 }

Now, this is different! It looks like we’re declaring a sequence with the { ⌋
} expression but remember that {} is also used to encapsulate things like
Query Expressions as well as sequences. The other main difference is it’s not
a “keyword” appearing before {} - it’s an instance of a class. Be that as it
may, this can be regarded as a sequence - a sequence of both synchronous
and asynchronous computation expressions that, combined, express a “com-
plete workflow”. You’ll recognise the let! as in our Mailbox processor usage -
it means, the way I put it, “loiter with intent” - the intent being an assignment.
Does it mean the same with regard to a computation expression? Assuming
that it’s an asynchronous assignment just that it so happens that the value
type x is evaluated via a constant, 42, rather than some “other”, possibly more
complex expression - but it could use such in the evaluation of x - the same
for the value type y.

What about the value type z? This too is purportedly evaluated asynchronously
given our current understanding of let! - and, by that understanding of the
evaluation of z as x + y, then z cannot be evaluated until after both x and
y have been asynchronously assigned. Only then, is the workflow capable of
evaluating the value of z.

Ultimately the workflow uses the “function” return to, clearly, output the asyn-
chronously evaluated z as the consequence of the workflow. Indeed the output
type of loggedWorkflow is int. Up to the point of the return invocation this
is all relatively “clear” given our current understanding - even if we were to re-
place 42 and 43 by other, more complex expressions and if, for example, the
value type x takes longer to evaluate asynchronously than y, then we still can’t
evaluate z until the evaluation of x is complete.

If you execute this workflow - a.k.a. sequence of computation expressions - in
FSI then you’ll get the output…

Learning Visual F# 4.0: Foundations II ◆ 978-1537312026 ◆ Copyright © 2016, Chris M. Shattock

Web
 Sam

ple

Computation Expressions/Workflows - Overview 579

expression is 42
2 expression is 43

expression is 85
4

val loggedWorkflow : int = 85

Now, I don’t know about you, bit I don’t like this - in fact I find it extremely
off-putting. I can “see” how the function return in the workflow may end up
invoking the Return member of the LoggingBuilder instance named logger
used in the “encapsulation” of the workflow and its apparently synchronous as
opposed to asynchronous. However, where the hell does the Bind get involved?
We know it is involved, since we can see the consequences of its side-effects in
the FSI output as messages detailing what it’s working against. If one “manu-
ally” invoked the Bind with the argument x = 42, it would fall over in a heap.
Bind expects two arguments so “something”, somewhere along the line is “con-
verting” let! x = 42 into an asynchronous unit of work that, “under the covers”,
invokes logger.Bind. We can’t invoke it as Bind 42 x because that makes no
sense, since the Bind output would then be the evaluation of the expression x
42 - which is meaningless as x is clearly not typed as a function! We can’t make
the function argument let since that’s an F# keyword not a function and, even
then, the argument would have to be x=42 and that, too, would be meaningless
as anything other than a string.

Video
309. Workflows and
Computation Expressions -
Parts I through IV.

Now, digging in the appalling mess that is the
MSDN “documentation” about Computation Ex-
pressions[34] (or, largely, elsewhere) we find that
the keywords let! and return, with regard to
Computation Expressions are referred to as “syn-
tactic sugar” - even more, that let!, with regard
to a computation expression, bears no similarity to our understanding of its
usage in, say, a Mailbox processor. Therefore, trying to analyse a workflow by
using what you “already know” about asynchronous evaluations is a fruitless
and pointless task! From the documentation a computation expression let! is
“syntactic sugar” for builder.Bind(expr, (fun pattern -> {| cexpr |}))
where, here “builder” refers to the logger instance and I don’t have the inclin-
ation, right now, to untangle this bowl of spaghetti for a “trivial requirement”.

For a workflow using computation expressions you are required to declare a
“builder class” such as LoggingBuilder, and the members of that class must
correspond to the “syntactic sugar” required methods for each type of expres-
sion you may use in your workflow - let! and do! map to a Bind member,
yield maps to a Yield member, yield! maps to a YieldFrom member and
so on. There are a total of 14 of these members required to encompass full
computation expression “syntactic sugar” functionality in a workflow. In Scott’s
example, we only require Bind to act upon the “syntactic sugar” in our workflow
of let! and Return against the workflow “syntactic sugar” or return.

Web
 Sam

ple

580 DEVELOPING A CORE LIBRARY

You have to ask yourself, depending upon how generically one can declare
such a “builder class”, do I have a functional requirement that closely mirrors
a workflow and is complex enough in its “branches” to justify such a “builder
class” definition and, even then, can I “re-use” such a class for “similar” work-
flows? You’d think that the answer to this question is - yes, I can create a
single, sufficiently “generic” class that will encapsulate a wide variety of work-
flows. However, if this were so, then why would there be a need to create such
a “builder class” in the first instance? It would be a core part of F# function-
ality - would it not? A “basic builder class” in the F# core that one can inherit
from or use directly to compose workflows. One reason appears to be that in
forcing one to explicitly create a “builder class”, one then has the opportunity
of expanding upon the functionality of the workflow - such as in Scott’s side-
effect of logging and, bear in mind, this is a “trivial” workflow requirement and
such functionality may better be incorporating using “other” mechanisms. That
latter statement is the other reason; generally, you may well find that a trivial
or simplistic workflow is better undertaken using a different strategy for the
evaluation of its outcome.

The bottom line is that, ultimately, your “builder class” and the methods it
exposes to handle the “syntactic sugar” used in your workflow is going to be
fairly specific to a single range of similar requirements. In Scott’s series he ends
up with a TraceBuilder() “builder class” that exposes full “syntactic sugar”
functionality - as in…

type TraceBuilder() =
2 member this.Bind(m, f) =

Option.bind f m
4 member this.Return(x) = Some x

member this.ReturnFrom(x) = x
6 member this.Yield(x) = Some x

member this.YieldFrom(x) = x
8 member this.Zero() = this.Return ()

member this.Delay(f) = f
10 member this.Run(f) = f()

member this.While(guard, body) =
12 if not (guard())

then this.Zero()
14 else this.Bind(body(), fun () ->

this.While(guard, body))
16 member this.TryWith(body, handler) =

try this.ReturnFrom(body())
18 with e -> handler e

member this.TryFinally(body, compensation) =
20 try this.ReturnFrom(body())

finally compensation()

Learning Visual F# 4.0: Foundations II ◆ 978-1537312026 ◆ Copyright © 2016, Chris M. Shattock

Web
 Sam

ple

